Chemistry Research Projects

If you're interested in participating in one of the projects described below, talk to the faculty investigator.

Natural Products Chemistry (Fitch)


The work in my group involves the isolation, structure elucidation and synthesis of natural products. Most of this work centers around neuronal nicotinic acetylcholine receptors, which are important to fast synaptic transmission in the central nervous system. Dysfunction of these receptors has been implicated in a number of disease states, including Alzheimer's and Parkinson's diseases, Tourette's syndrome, Schizophrenia, and certain epilepsies. Projects in my group include isolation and identification of bioactive compounds from plants, including tobacco, Laburnum (golden chain tree), Kentucky Coffeetree and other legumes. Synthetic projects include enantioselective Swern oxidations and metal-mediated reactions, synthesis of natural products, such as epiquinamide, and medicinal chemistry of bioactive compounds for determining structure-activity relationships. While I take students at all levels, an understanding of organic chemistry is needed for the synthetic projects and thus preference will be given to those who have completed CHEM 351/352 with reasonable grades.

Biochemistry: Plant and Fungal Enzymes: Browning Reactions in Plants, Fruits, and Vegetables (Flurkey)

Browning reactions occur in plants, fruits, and vegetables just as they do in mammals and invertebrates. These reactions can lead to loss of nutritional quality and consumer appeal in fruits and vegetables. The enzymes responsible for these reactions include tyrosinase (polyphenoloxidase), laccase, and peroxidase. Tyrosinase exists in an inactive or latent form that can be converted into active forms under various conditions. We are currently examining the biochemical characteristics of the active and latent enzyme in order to understand their relation to browning. We are also examining forms of the enzyme that exist during mushroom development using isolelectric focusing and 2-D electrophoresis. Number of participants: one to three, preferably with an interest in biochemistry. Required background: interest in biochemistry, knowledge of organic chemistry. What the participants will learn: biochemical techniques associated with protein and enzyme characterization.

Computational Chemistry: Reactions of Small Organic Molecules on Metal Atoms (Glendening)


Metals promote a variety of insertion, rearrangement, and elimination reactions in organic systems. Though the products of these reactions can be identified in the laboratory, the mechanisms by which they are produced often remain unclear. We use computational chemistry methods to explore, in detail, reactions of small organic molecules on single transition metal atoms. We are particularly interested in understanding how the metal center influences the reaction. Recent attention has focused on the gas-phase reactions of acetylene, ethylene, and formaldehyde with neutral yttrium atoms. Comparison data are available from molecular beam experiments. The calculations reveal that the reactions are controlled by the insertion of metal atoms into C-H bonds. Number of participants: one to three, preferably chemistry majors, freshmen or higher. Required background: interest in computers. What the participants will learn: computational chemistry methods, high-level calculations with the Gaussian 98 and MOLPRO programs, the Linux operating system.

Bioinformatics (Inlow)


The field of bioinformatics centers around the computer-assisted analysis of molecular sequences (protein, DNA, RNA). Bioinformatics tools and techniques can be used to investigate biological questions relating to these sequences, with the goal of providing information and predictions to guide subsequent work by experimentalists. Our work focuses on structural bioinformatics problems, employing sequence analysis in order to predict protein structure and/or function. One project currently underway is the analysis and comparison of the amino acid sequences of the enzyme tyrosinase from a variety of species. Of particular interest are tyrosinases from plants and fungi. Number of participants: one to two undergraduate chemistry majors with an interest in biochemistry. Required background: knowledge of organic chemistry and introductory biology (knowledge of biochemistry is desirable but not essential). What the participants will learn: use of bioinformatics tools for sequence alignment, secondary structure prediction, protein structure visualization, prediction of protein posttranslational modification, and interpretation of results.

Organometallic Chemistry (Van Hoveln)

Dr. Van Hoveln is interested in the chemistry of organometallic complexes and their use as catalysts for new organic transformations. More specifically, his research focuses on using inexpensive and benign first row transition metals rather than the precious metals that are typically used in catalysis. Current work focuses on using copper to incorporate boranes and silanes into organic molecules which can be used as intermediate functional groups for further reactivity. Work in his lab involves learning a number of traditional organic techniques including handling pyrophoric reagents, performing reactions under an inert atmosphere, and using an NMR spectrometer.

Cosmochemistry (Wolf)

The chemical and physical conditions prevailing in the early solar system are recorded in the structure and composition of meteorites. This is particularly true for the primitive ten-family group of meteorites designated as chondrites. Because meteorite composition provides information about the parent planets from which they are derived, a systematic method for meteorite classification is essential to interpretation of this information. Our goal is to develop a systematic chemometric method for the classification of meteorites based on their bulk composition We are investigating the applicability of multivariate chemometric data analysis techniques including discriminant analysis, cluster analysis and principal component analysis of data from published meteorite composition databases for this purpose. Interested students must have completed Chemistry 321, have experience with Microsoft Excel, and have an interest in analytical chemistry and cosmochemistry. Additional information on the classification of meteorites can be found on Dr. Wolf's Research Group Homepage:

Inorganic and Materials Chemistry (Zuo)

Dr. Zuo is interested in the rational design of new materials. These materials will have customized properties appropriate for the desired applications. One area of research involves doping chemistry to modulate the band structure of inorganic semiconductor oxides, leading to variable optical and electronic properties. The resulting materials could have broad applications in clean, renewable energy. Another avenue of research investigates inorganic-organic hybrid 2D structure. By applying simple but powerful chemistry tools, a new type of hybrid 2D structure (different from current, well-studied inorganic 2D materials) with unconventional electronic and optical properties will be formed and studied.

Contact Information
Jennifer Inlow, Chairperson

Department of Chemistry and Physics
600 Chestnut Street
Science Building, Room 035
Indiana State University
Terre Haute, IN 47809

Office: Science 035
Phone: 812-237-2239
Fax: 812-237-2232

Office: Science 165
Phone: 812-237-2239
Fax: 812-237-4396

Office Hours
8:00 AM - 4:30 PM

Driving Directions